NVIDIA.

NVI DI A6s Next Generati on
CUDA" Compute Architecture:

V1.0

Table of Contents

Kepler GK110/210 GPU Computing ArCNITECIUIEevviiiiiiiiiiieee e e ettt e e e e e e e 3
Kepler- High Performance QDULING........cceeoriiiiriiieeeeiiiiie e e s e s s e e e e e s nnnnneed 4
I Y g T T o (ol o= T ir= 1 [= 1 o P 5

I 17/ 01 U 5

| I T o 1Y =Yg =T =0 0= o 0 o | 5

T NVIDI A GPUDI.&.Ct B 5
An Overview of Kepler GK110 and GK210IBTHUIE...........ooiverreieeeiiiieieee e e e 6
Streaming Multiprocessor (SMX) ArChItECILIE.ooiii i 8
SMX Processing Core ArChItECIUIR.cuiiiiiiiiiiiiee e e e 9
QUAd WaArP SCREAUIET.........cco e s s e e e s aaaaaas 9
New ISA Encoding: 255 Registers per Thread.............ooooeeeeiiiii e 11
SNUFFIE INSTIUCTION ...t e e e 11

F o] (ol @] o 1] =i (o] 1 - ST PP PP PPPPPPPPPON 12
TEXIUrE IMPIOVEMENESttt e e e et e et e e e e e e et aaeaaeeaaaaaaaaasssassaa s s s nnnnnnnnne 12
Kepler Memory SubsysteQiLl, L2, ECC... ...t 13
Configurable Shared Memory and L1 Cache............cccoo i 13
48KB Rea®Dnly Data CacCh........uuuviiiiiiiiiiieiieeee e 14
IMProved L2 CaChe.........coo o e e e e e e e e e e e e e e e e e s e e e s e e s e e aaaaes 14
MEMOTY ProteCtION SUPPOIL......cciiiiiiiiiiee ettt e e e e e e e e e e e e e s anbrnneeeeeeaanes 14
DyNamiC ParalleliSIM........cooiiiiiiiii et e e 15

[1Y 1] O PP TP P PP PP PP PP P PP 17
Grid Management UnitEfficiently Keeping the GPU Utilized.................cco oo, 19
bt L5L! Dt B A NI O oo, 20
(070] 0 [od 1151 o o H PP PPPPRP PP 21
Appendix A - QUICKRETrEShEr 0N CUDAL.........oii e 21

CUDA HardwWare EXECULION.cee ettt e et e et e e e e e e eeeneaes 22

Kepler GK110/210 GPU Computing Architecture

As thedemand forhigh performance parall@lomputingincreasesacross many areas of science
medicine, engineering, and finanddYIDIA continues tmnovate andneet thatdemand with
extraordinarily powerful GPU computirgchitectures NVIDIA @PUs have alreadgdefined and
acceleratedHigh Performance ComputirfglPC) capabilitieia areas such as seismic processing,
biochemistry simulations, weather and climate modejiaignal processing, computational finance,
computer aided engineering, computational fluid dynamics, and data andbygid. 5 KepleR a
GK110/210GP$are designed thelp £ t @S (i KrBostdigfiddlf cBngpéting problems.

By offeringmuchhigher processingpower than the priorGPUgereration andby providingnew methods
to optimize and increasparallelworkload execution on the GPWeplerGK110/21Gimplify creation of
parallel progrars andfurther revoluionizes high performancecomputing.

Kepler - High Performance Computing

Comprigng 7.1 billion transistorsthe KeplerGK110/21Qarchitectureincorporatesmany new innovative
features focused on computgerformance KeplerGK110and GK21@re designed to be a parallel
processingpowerhouse for Tesl&and the HPC market.

Both Keder GK110 and 21provide over ITFlopof double precision throughput with greater than 80%
DGEMM efficiency versi®-65%on the prior Fermiarchitecture.

Kepler GK11ie Photo

The following new features in Kepler GKEhable increase@&PU utilization, simplify parallel program
design, and aid in the deployment of GPUs across the spectrum of compute environments ranging from
personal workstations to supercomputers:

1 Dynamic Parallelism ¢ adds the capability for the GPU to generate new work for itself,
synchronize on results, and control the scheduling of that work via dedicated, accelerated
hardware paths, all without involving the CPU. By providing the flexibility to adapeto th
amount and form of parallelism through the course of a program's execution, programmers can
expose more varied kinds of parallel work and make the most efficient use the GPU as a
computation evolvesThiscapabilityallows lessstructured,more complex aisks to run esily
and effectively, enablinarger portions of anplication to run entirely on the GRUh addition,
programsare easier to create, anthe CPU is freed father tasks.

T Hyper-Q ¢ HyperQ enables multiple CPU cores to launch work omgles GPU
simultaneously, thereby dramatically increasing GPU utilization and significantly reducing CPU
idle times. HypeQ increases the total number of connect(work queues) between the host
and theGK110 GPU by allowing 32 simultangdardwaremanaged connectionscbmpared to
the single connection available with FejntlyperQ is a flexible solution that alloveeparate
connectiondrom multiple CUDA streamd$rom multiple Message Passing Interface (MPI)
processes, or eveinom multiplethreads within a proces#\pplications that previously
encountered false serialization across tasks, thereby limiting achieved GPU utilizatisee
up todramaticperformance increase without changing any existing code.

1 Grid Management Unit ¢ Enabling Dynamic Parallelismequires an advanced, flexible
grid management and dispatch control system. The new GKliitManagement Unit (GMU)
manages and prioritizes gritls be executedn the GPU. The GMU can pause the dispatch of
new grids and queue pendjrand suspended grids urtiley areready to executgprovidingthe
flexibility to enable powerful runtimes, such BynamicParallelism. The GMU ensures both
CPUand GPWenerated workloads are properly managed and dispatched.

1 NVIDIA GPUDirectE ¢ NVIDIAGPUDireot is a capability that enables GPUs with
single computeror GPUs in different servelscatedacrossa network, to directly exchange
data without needing to go t€PUsystem memoryTheRDMA featurén GPUDirecallows
third party devices sth asSSDs, NICs, algladaptersto directly access memory anultiple
GPUs within the same systesignificantlydecreasinghe latency of MPI send and receive
messageso/from GPU memory. It also reduces demands on system memory bandwidth and
freesthe GPU DMA engines for use by other CUDA t&&qsler GK110 also supports other
GPUDirect features including PderPeer andGPUDirecfor Video.

An Overview of Kepler GK110 and GK210 Architecture

Kepler GK110 was built first and foremést Tesla, ands goal wago be the highest performing
parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute
horsepower delivered bgrevious generation GPUBuLt it does so efficiently, consuming significantly
less power and garating much less heat output

GK110 and5K10 areboth designed to provide fast double precision computing performance to
accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU
architecture which is designegrimarily for fast graphics performance and single precision consumer
compute tasksWhile the Maxwell architecture performs double precision calculations at rate of 1/32

that of single precision calculations, tkK110 and GK2Xeplerbased GPUs are cdpa of performing
double precision calculations at a rate of up to 1/3 of single precision compute performance.

Full Kepler GK118nd GK21@mplementatiorsA y Of dzZRS mp {a- dzyAlG& YR &AE ¢
Different products will use different cogfiirations. For example, some products may deploy 13 or 14
SMXsKey features of the architecture that will be discussed below in more depthde:

1 The new SMX processor architecture

1 An enhanced memory subsystem, offering additional caching cépeiinore bandwidth at
each level of the hierarchy, and a fully redesigned and substantially faster DRAM |
implementation.

9 Hardware support throughout the design to enable new programming model capabilities

9 DYHmn SELI yRa -diphJ2spurdesfoulliny hé avaiable register file and shared
memory capacities per SMX.

PCI Express 3.0 Host Interface

Jejjonuon fowasy
Jsjjonuon fiowsy

=
o
F
8
2
o
g
E
L
3
]

Jajjonuogn Aowsapy

Jajjonuon fiowasw
asjjonuosy fowsy

Kepler GK110 Full chip block diagrdfepler GK110 supportse new CUDA Compute Capability 3For a
brief overviewof CUD/AseeAppendix A Quick Refresher on CURAhe followng table compares
parameters of differenComputeCapabilitiedor Fermi and Kepler GPU architectures:

Compute Capability of Fermi and Kepler GPUs

FERMI | FERMI | KEPLER KEPLER KEPLER
GF100 | GF104 | GK104 | GK110 [GK210
Compute Capability 2.0 2.1 3.0 3.5 3.7
Threads / Warp 32
Max Threads / Thread Block 1024
Max Warps / Multiprocessor 64
Max Threads / Multiprocessor 1536 2048
Max Thread Blocks / Multiprocessor 16
32-bit Registers / Multiprocessor 32768 65536 131072
Max Registers / Thread Block 32768 65536 65536
Max Registers / Thread 63 255
Max Shared Memory / Multiprocessor 48K 112K
Max Shared Memory / Thread Block 48K
Max X Grid Dimension 27161 2"32-1
HyperQ No Yes
Dynamic Parallelism No Yes

Streaming Multiprocesso(SMX Architecture

TheKepler GK1UEK210SMXunit features several architectural innovations that makehe most
powerfulmultiprocessow S Q @ Sfor dlaldlef piecision compute workloads.

SMX

Instruction Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
S 2 L = S 2 3 . 3 s -

Register File (131,072 x 32bit)

4 3 3 3 3
Lo/sT SFU Core Core Core

™
- *
-
-
-
-
-
-
-
-
™
-
-

SFU Core Core Core

SFU Core Core Core

SFU |Core Core Core

SFU Core Core Core

SFU Core Core Core

SFU Core Core Core

SFU Core Core Core

SFU Core Core Core

SFU Core Core Core

SFU Core Core Core

SFU Core Core Core

SFU |Core Core Core

SFU Core Core Core

SFU Core Core Core

Core Core Core

112 KB Shared Memory / L1 Cache
48 KB Read-Only Data Cache

Tex Tex

Tex Tex

SMX 192 singleprecision CUDA cores, @lbuble-precisionunits, 32 special function unitfSFU), and 3®ad/ store units
(LD/ST)

SMX Processing Core Architecture

Eachof the Kepler GK11R210 SMX units featurel92singleprecisionCUDAcores, and achcorehas
fully pipelinedfloating-point andinteger arithmetic logianits. Kepler retainghe full IEEE 752008
compliantsingle and doubleprecision arithmetic introduced in Fermi, including the fused mukizy
(FMA) operation.

One of the design goals for the Kepler GK210 SMX was to sighiA OF yiGf & Ay ONBlFasS (KS
double precision performancajncedouble precision arithmetic is at the heart of many HPC

applications. Kepler GKI/K10Q& {a- I f &2 NBOGFAya GKS aLISOALFf TFdzy Ol
transcendental operabns as in previougeneration GPUs, providif@x the number of SFUs thfe

Fermi GF110 SM.

Similar to GK104 SMX units, the cores within the new GR1AGMX units use the primary GPU clock
rather thanthe 2xshaderclock Recall the 2x shader clock wasroduced in the G80 Teskxrchitecture
GPU and used in all subsequent Teatad FermiarchitectureGPUsRunning execution units at a higher
clock rate allows a chip to achieve a given target throughput with fewer copies of the executisn unit
which isessentially an area optimization, but the clocking logic for the faster cores is more-power
hungry. FoKepler our priority was performance per waltvhile we made many optimizations that
benefitted both area and power, we chose to optimize for power eaktne expense afome added
area cost, with a larger number of processing cores running at the lower, less-hangry GPU clock.

QuadWarp Scheduler

The SNKschedules threads in groups of 32 parallel threads called warps. Eatfe&Mresfour warp
schedulers aneéightinstruction dispatch units, allowinfgpur warps to be issued and executed
concurrently.Y S LI g8awagp scheduler selectsur warps, andwo independentinstructions per
warp can be dispatched each cytlalike Fermi, whicklid not permit double precision instructiont®
be paired with otheinstructions Kepler GK11R10 allows double precision instructions to be paired
with other instructions

time
oo
LEE J

Each Kepler SMX contains 4 Warp Schedulers, each with dual Instruction Dispaith A single Warp Scheduler Unit is
shown above.

We also looked for opportunities to optimize the power in the SMX warp scheduler logic. For example
both Kepler and Fermi schedulers contain similar hardware units to handle the scheduling function,
incduding

a) Register scoreboarding for long latency operations (texture and load)
b) Inter-warp scheduling decisions (e.g., pick the best warp to go next among eligible candidates)
c) Thread block level scheduling (e.g., the GigaThread engine)

H 6 SOSNE CSNX¥AQa aOKSRdz SNI Ff&a2 O2yidlAya || O2YLX St
math datapath itself. A muHport register scoreboard keeps track of any registers that are not yet ready

with valid data, and a dependency checker block aresyegister usage across a multitude of fully

decoded warp instructions against the scoreboard, to determine which are eligible to issue.

For Kepler, we recognized that this information is deterministic (the math pipeline latencies are not
variable), andherefore it is possible for the compiler to determine up front when instructions will be
ready to issue, and provide this information in the instruction itself. This allowed us to replace several
complex and poweexpensive blocks with a simple hardwatedk that extracts the preletermined
latency information and uses it to mask out warps from eligibility at the int@mp scheduler stage.

New ISA Encoding: 255 Registers per Thread

The number of registers that can be accessed by a thread has been qisathu®K110, allowingach
thread access top to 255 registers Codes thaexhibit high register pressure gpilling behavior in

Fermi maysee substantial speedups as a result of the increased availabtbnead register countA
compelling example can be seen in the QUDA library for performing lattice QCD (quantum
chromodynamics) calculations using CUDA. QUDAKRp6dd algorithms see performance increases up
to 5.3x due to the ability to use many more registers per thread aqegencingewer spillsto local
memory.

GK210 further improves this, doubling the overall register file capacity per SMX as compared to GK110.
In doing so, it allows applications to more readily make use of higher numbers of registers per thread
without sacrificing the number of threads thatrcéit concurrently per SMXFor example, a CUDA

kernel using 128 registers thread on GK110 is limited to 512 out of a possible 2048 concurrent threads
per SMX, limiting the available parallelism. GK210 doubkesdhcurrency automatically in this case,
which can help to cover arithmetic and memory latencies, improving overall efficiency.

Shuffle Instruction

To further improve performancéepler implements a new Stilgf instruction,which allowshreads

within awarp to share dataPreviously, sharing data between threads within a warp required separate
store and load operatiosto pass the data througehared memoryWith the Shuffle instruction,

threads within a warp can read values from other threads in theopwajust about any imaginable
permutation Shuffle supports arbitrary indexed referenagie. any thread reads from any other
thread. Useful shuffle subsets includingxtthread (offset up or down by a fixed amount) ak®R

G 0dzi G SNF £ & ¢ ngainé@nf tBe thrdddsdn drivadrplireha®o available as CUDA intrinsics.

Shuffleoffersa performance advantagevershared memory, in thaa storeandloadoperation is

carried out in a singlstep. Shuffle alscanreduce theamount ofshared memonneeded per thread

block, since data exchanged at the warp level never needs to be placed in shared memory. In the case of
FFT, which requires data sharing within a warp, a 6% performance gain can be seen just by using Shuffle.

abcdefgh
/ \

__shfl() __shfl_up() __shfl_down() __shfl_xor)
h'dfeacchb ghabocdef cde fghab cdabghef
Indexed Shiftrightto nth Shitt left to nt" neighbour Butterfly (XOR)
any-to-any neighbour exchange

This example shows some the variations possible using the new Shuffle instruction in Kepler.

Atomic Operations

Atomic memory operations are important in parallel programming, allowing concutinesads to
correctlyperform readmodify-write operationson shared data structureg\tomic operations such as
add, min, max, and compaand-swapare atomic in the sense th#tie read, modify, and write
operations areperformed without interruptionby other threads Atomicmemaoryoperations arevidely
usedfor parallelsorting, reductim operationsand building data structures in parallgithout locks that
serialize thread execution.

Throughput of global memory atomic operations on Kepler GKRILTare substantially improved
compared to the Fermi generation. Atomic operatibnoughpu to a common global memorgddress

is improved by 9x to one operation per clock. Atomic operation throughput to independent global
addresses is also significantly accelerated, and logic to handle address conflicts has been made more
efficient. Atomic opeations can often be procesd at rates similar tglobal load operations. This speed
increase makes atomics fast enough to use frequently withinédénner loops, eliminating the
separatereduction passethat were previously required by some algorithtosconsolidate results.

Kepler GK110 also expands thative support for 64it atomic operations in global memory. In

addition to atomicAd, atomicCAS, and atomicExch (which were slgmported by Fermi and Kepler
GK104)GK110 supports the following

atomicMin
atomicMax
atomicAnd
atomicOr
atomicXor

= =4 =4 4 =

Otheratomicoperations which are not supported nativelfpr example 64it floating point atomics)
may be emulated using the compaaed-swap (CAS) instruction.

Texture Improvements

¢ KS Dt ! Q& R SrRTefurdiubitk ar&a valdRldd resource for compute programs with a need
to sample or filter image datahe texture throughput in Kepler is significantly increased compared to
Fermig each SMX unit contains 16 texture filtering units, a 4x increaseavBaglmi GF110 SM.

In addition, Kepler changes the way texture state is managed. In the Fermi gengfatitime GPU to
NEFSNBYyOS | GSEGdINBT Al XKiteRindingtabiportb gridlavAfiB&® | G &f 2
number of slots in that table ultimately limits how many unique texturggagramcan read from at run

time. Ultimately, gorogramwas limited to accessg only128 simultaneous textures in Fermi.

With bindless textures in Kepler,afadditional stepof using slotsh & y Q (i yiektOr& stade lis M@VY
saved as an object in memory and the hardware fetches these state objects on demakidg binding
tables obsoleteThis effectively eliminates any limits on the number of unique teeduhat can be

referenced by a compute prograrnmstead, programs can map textures at any time and pass texture
handles around as they would any other pointer.

KeplerMemory Subsysteng L1, L2, ECC

YSLI SNRA YSY2NE KA SNI NDKEeKeperagHitdturgshppodi$a urafiady A t | NI &
memory request path for loads and stores, with an L1 cache p&rtiprocessorKepler GK110 also
enables compiledirected use of an additionalew cache for reaebnly data, as described below.

Kepler Memory Hierarchy

[Shared [
Memory

Configurable Shared Memory and L1 Cache

In the Kepler GK110 architecture, as in the previous generation Fermi architecture, each SMX has 64 KB
of on-chip memory that can be configured as 48 KB of Shared memory with 16 KB of L1 caché, or as 1
KB of shared memory with 48 KB of L1 cache. Kepler now allows for additional flexibility in configuring
the allocation of shared memory and L1 cache by permitting a 32KB / 32KB split between shared
memory and L1 cach&o support the increased throughpat each SMX unit, the shared memory

bandwidth for 64band largedoad operations is also doubled compared to the Fermi SM, to 256B per

core clock.

For the GK210 architecturthe total amount of configurable memory is doubled to 128 &Bwing a
maximun of 112 KB shared memoaynd 16 KB of L1 cachéther possible memory configurations are
32 KB L1 cache with 96 KB shared menmm¢8 KBL1 cache with 80 KB of shared memomis
increase allows a similar improvement in concurrency of threadsersatsled by the register file
capacity improvement described above.

48KBReadOnly DataCache

In addition to the L1 cache, Kepler introduces a 48KB cache fottasts known to be reawnly for

the duration of thefunction. In the Fermi generation, thisache wasccessible only byhe Texture unit.
Expert programmers often found it advantageous to load data through this path explicitly by mapping
their data as textures, but this approablad many limitations.

In Kepler, in addition to significantly imasing the capacity of this cache along with the texture

horsepower increase, we decided to make the cache directly accessible to tfor §dheral load

operations.Use of the reaebnly path is beneficial because it takes both load and working set fowtpri

off of the Shared/Ltachepath. In addition, the Rea®nlyDatad OKS Q& KAIKSNJ GF 3 o YRy
full speed unaligned memory access patterns among other scenarios.

Use of the reaebnly path can bemanaged automatically byne compileror explicity by the

programmer. &cess to any variable or data structure that is known to be constant through programmer

dzaS 2F GKS [/ ppmadl yRFNR aO2yaid YeNBaldNKOioagh| Se& g2 N
0§KS wSI Rmh y fh& pragtainrher daalsOekdlichly use this path with the __Idg() intrinsic

Improved L2 Cache

The KepleGK11210 GP$feature 1536KBf dedicated L2 cache memgouble the amount of L2
available in the Fermi architecture. The L2 cache is the primary point of datzatioifi between the
SMXunits, serviéng all load, store, and texture requests apdovidingefficient, high speed data sharing
across the GPUhe L2 cache on Kepler offarp to 2x of the bandwidthper clockavailable in Fermi.
Algorithms for which data addresses are not known beforehand, such as physics solvigesimgy and
sparse matrix multiplication especially benefit from the cache hierarf€itter and convolution kernels
that require multiple SMs to read the same dadlso benefit.

Memory Protection Support

[A1S CSNX¥YAZ YSLI SNRA NBIAAGSNI FAfSasx akKlFINBR YSY2N.
protected by a Singt&rror Correct Doubk&Error Detect (SECDED) ECC dodeddition, the Rea®nly

Data Cache suppatsingleerror correction through a parity check; in the event of a parity error, the

cache unit automatically invalidates the failed line, forcing a read of the correct data from L2.

ECC checkbit fetches from DRAM necessarily consume some amount ofdaRdidth, which results
in a performance difference between E€@abled and ECdisabled operationespecially on memory
bandwidthsensitive applications. Kepl&K110mplementsseveral optimizations to ECC checkbit fetch
handling based on Fermi experiEn As a result, the ECC-aoff performance delta has been reduced
by anaverage of 66%, as measured across our internal comgpgkcationtest suite.

Dynamic Parallelism

In a hybrid CPAGPU systepenabling a larger amount of paraliebde inanapplication to run efficiently
andentirely within the GPUmprovesscalalility and performance as GPUs increaspernf/watt. To
accelerate these additionglarallelportions of the applicationGPUs must support more varied types of
parallel workloads

Dynamic Parallelism is introduced with Kepler GKdriddalso included in GK210altowsthe GPU to
generate new work for itself, synchronize on results, and control the scheduling of that work via
dedicated, accelerated hardware paths, all withautolving the CPU.

Fermi was very good at processing large parallel data structures when the scale and parameters of the
problem were known at kernel launch time. All work was launched from the host CPU, would run to
completion, and return a result back to the CPU. The tegolild then be used as part of the final

solution, or would be analyzed by the CPU which would then send additional requests back to the GPU
for additional processing.

In Kepler GK11210 any kernel can launch another kernahdcan create the necessasfreams,
eventsandmanage thalependencies needed to process additional work without the need for host CPU
interaction. This architectural innovation maké@sasierfor developergo createandoptimize recursive

and datadependent execution patterngnd allowsmore of a program to be run directly dBPU The

system CPU cahen be freed up for additional tasks, or the system could be configured with a less
powerful CPU to carry out the same workload.

Dynamic Parallelism
GPU Adapts to Data, Dynamically Launches New Threads

Fermi GPU Kepler GPU

i Tl
—- i
— W (i

~ .
|

mmwmw m m
) <« m

PR : —r 4 P S
L) o
{I:IW |

Dynamic Parallelism allows more parallel code in application to be launched directly by the GPU oritself (right side of
image) rather tharrequiring CPUntervention (left side of image)

Dynamic Parallelism allows more varieties of parallel algorithms to be implemented on the GPU,
including nestedoops with differing amounts of parallelism, parallel teams of serial cotaisk
threads, or simple serial control code offloaded to the GPU in order to promotelaieaiity with the
parallel portion of the application.

Because kernel has the abilityo launch additional workloads based on intermediate;@RU results,
programmers can now intelligentlgad-balance worko focus the bulk ofheir resourceson the areas
of the problem that either require the most pcessing power or are most relevantttee solution.

One example would be dynamically setting up a grid for a numerical simutatygically grid cells are
focused in regions of greatest change, requiring an expensivprpEssing pass through the data.
Alternatively, a uniformly coarseid could be used to prevent wasted GPU resources, or a uniformly
fine gridcould beused to ensure all the features are captured, but these options risk missing simulation
features orcover-spending compute resources on regions of less interest.

With DynamicParalleism, the grid resolution can be determined dynamically at runtimadata
dependentmanned { G NI Ay 3 gAGK | O2FNBRS INRARRI G & A Ydz | |
avoidngunnecessary calculation in areas with little charig@mughthis could beaccomplishedisinga
sequence of CRlaunched kernelst would be farsimpkr to allow the GPU to refine the gritbelf by
analyzinghe dataand launching additional work as part of a single simulation kernel, eliminating
interruption of the CPU andatatransfersbetweenthe CPU and GPU.

¢lmage attribution Charles Reid

The above example illustrates the benefits of using a dynamically sized grid in acalrsienulationTo
meet peak precision requirements, a fixed resolutsimulation must run at an excessively fine
resolution across the entire simulation domain, whereas a nraffolution grid applies the correct
simulation resolution to each area based on local variation.

HyperQ

One of the challenges in the past has b&erping the GPU supplied with aptimally scheduled load
of workfrom multiple streamsThe Fermi architecture supported 4y concurrency of kernel
launches fronseparate streamdyut ultimatelythe streamswere all multiplexed into the same
hardware wak queue. Thiallowed forfalseintra-stream dependenciesequiring dependent kernels
within one stream to complete before additional kernels in a separate streardbe executed. While
this could be alleviated to some extenhrough the use of a bredl-first launchorder, as program
complexity increaseshis canbecome more and more difficulb manage efficiently

KeplerGK11@210 improveon this functionalitywith their HyperQ feature. HyperQ increases the total
number of connectiongwork queues) between the host and the CUDA Work Distribu@kVD)ogic in
the GPU bwllowing 32 simultaneoysardwaremanagedconnectiongcomparedto the single
connection available with FermiHyperQ is a flexible solution that allows connectidram multiple
CUDA streamd$rom multiple Message Passing Interface (MPI) processes, orfesenmultiplethreads
within a processApplicationsthat previously encounterefalseserialization across tasks, thereby
limiting GPU utilizatiorgan see up to a 3%erformance increase without changing any existing code.

Hyper-Q
CPU Cores Simultaneously Run Tasks on Kepler

FERMI KEPLER

1 Task ata Time 32 Simultaneous Tasks

=N A e

HyperQ permits more simultaneous connections between CPU and GPU.

EachCUDAstream is managed within its own hardware work quetmer-stream dependencies are
optimized,and operatiorsin one dreamwill no longer bloclother streams enabling streams to execute
concurrently without needing to specifically tailor the launch order to eliminate possible false
dependencies.

HyperQ offers significant benefits for use in MPased parallel computesystems. Legacy MBased
algorithms were often created to run on muttore CPU sysms, with the amount of work assigned to
eachMPI processcaled accordingly. This can lead to a single MPI process having insufficietd work
fully occupy the GPWVhileit has always been possibier multiple MPI processes tsharea GPU,

these processes could become bottleneckeddige dependencieslyperQ removes those false
dependencies, dramatically increasing the efficiency of GPU sharing across MPI processes.

Fermi Model Kepler Hyper-Q Model
STREAM 1 STREAM 2 STREAM 3 STREAM 1 STREAM 2 STREAM 3
N N [N ((N [
A P X A P X
| | | | | |
B Q Y B Q Y
| | | | | |
C R Z C R Z
_ A / VAN
N T =5
CA-BLC PYaR XY-Z A=B=C
_ < P-Q-R
Single hardware work queue
{ X-Y-Z

Each stream receives its own work queue

HyperQ working with CUDA Streamb the Fermi model shown on the lefonly (C,P) & (R,X) can run concurrently due to
intra-stream dependencies caused by the single hardware work queue. The Kepler Hympeodel allows all streams to run
concurrently wsing separate work queug

Grid Management Unit Efficiently Keeping the GPU Utilized

New featuredntroduced withKeplerGK11Qsuch as the ability for CUDA kernels to launch work directly
on the GPWvith DynamidParallelismrequired that theCPUto-GPUworkflow in Kepler offer increased
functionality over theFermidesign. On Ferma grid of thread blocksvould belaunched bythe CPUand
would always run to completion, creatingsampleunidirectional flowof workfrom the host tothe SMs
viathe CUDA Work Distributor (CWD) unit. Ke@112210 improve theCPUto-GPUworkflow by
allowing the GPU to efficiently manageth CPUand CUDAcreated workloads.

We discused the ability of KeplelGK1105PU to allow kernels to launch work directlytbe GPlJand
AGQa AYLRNIFYyG G2 dzy RS NE (GKIRarchitéciure Kakilitai $hase velv R S
functions. In KepletsK110/210a grid can be launched from tl&PUust as was the case with Fermi,
however new grids can also be creatgdgrammatically by CUDA within the Kepler SMK. To

manage bothCUDAcreated andhostoriginated grids a newGrid Management Unit (GMWas
introducedin Kepler GK110rhis control unit manages and prioritizes gilust are passed into the

CWDto be sent to the SMX units for execution.

TheCWD irKepler hold gridsthat areready to dispatchandit is able to dispatch 32 active grids, which
is double the capacity of the Fermi CWD. The Kepler CWD communicates wiMtiea a bi
directional linkthat allows theGMUto pause the dispatch of new grids atodhold pending and
suspended grids until needed. T@BMUalso has a direct connection to the Kepler SMX uoifgermit
gridsthat launch additional work on the GRlih Dynamic Parallelisto sendthe new workback to
GMUTto be prioritized and dispatchedf the kernelthat dispatched the additional worklogohusesthe
GMU willhold it inactive until the dependent work has completed

Fermi Workflow Kepler Workflow
Stream Queue Stream Queues
Ordered queues of grids Ordered queues of grids
sae
lUne-way Flow l
S CUDA-Created Grid Management Unit
- _— Work Distributor ""—_\\ Work Pending & suspended grids
."/ Tracks blocks issued from grids \\ 1000's of pending grids
\ J
. ve Gri S
T \\|\,,, 16 Active Grids /L/’/ + Two-_way !ink allows
— _ pausing dispatch
¥y
/ f \l\‘ - — Work Distributor T -
.-’/ Actively dispatching grids \\
sm sm sm sm | 32 Active Grids | /’
‘\\.,,,_;_ — -
= SMX SMX SMX SMX

The redesigned Kepler HOST to GPU workflow shows the new M aitagement Unit which allows it to manage the actively
dispatching grids, pause dispatchnd hold pending and suspended grids.

%

NVIDIAGPUDireat

When working witha large amount of dataincreasinghe data throudhput and reducing latency is vital
to inaeasing compute performanc&epler GK11@10 supportthe RDMA feature ilNVIDIA GPUDirect
which isdesigned tamprove performance bgllowing direct access t6PUmemoryby third-party
devices such as Hlapters NICsand SSD&Vhen using CUDA 5d0 later, GPUDirect provides the
following important features:

T

T
T
1

Direct memory access (DMA) between NIC and GPU without the need fesidiPdhta

buffering.

Significantly improved MPISelidPIRecv efficiency between GPU and other nodes in a network.
EliminatesCPU bandwidth and latency bottlenecks

Works with variety o8 -party network, captureandstorage devices

Applications like reverse time migration (used in seismic imaging for oil & gas exploration) distribute the
large imaging data across several GRUmdreds of GPUs must collaborate to crunch the data, often
communicating intermediate results. GPUDirect enables much higher aggregate bandwidth for this GPU
to-GPU communication scenario within a server and across servers with the P2P and RDMA features.

Kepler GK110 also supports otti@gPUDirecfeatures such as Pe¢n-Peer and GPUDirect for Video.

Direct Transfers between GPU and 3rd Party Devices

GPUDirect RDMAllows direct access to GPU memofsom Srd-party devices such as network adapters, whitthnslates into
direct transfers betweenGPsacrossnodesas well

